Tag: atari

MuZero talk - ICAPS 2020

I gave a detailed talk about MuZero at ICAPS 2020, at the workshop "Bridging the Gap Between AI Planning and Reinforcement Learning".

In addition to giving an overview of the algorithm in general, I also went into more detail about reanalyse - the technique that allows MuZero to use the model based search to repeatedly learn more from the same episode data.

I hope you find the talk useful! I've also uploaded my slides for easy reference....


MuZero - Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model

I'm excited to finally share some more details on what we've been working on since AlphaZero.

Recently, we made our latest paper - Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model, aka MuZero - available on arXiv:

Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this ...

© Julian Schrittwieser. Built using 開板. Theme by Giulio Fidente on github. .